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Welcome

Welcome to the course materials for the Statistical thinking short course. This course was
designed for and with the UK Ministry of Justice to encourage data-driven critical thinking.

What is statistical thinking?

Statistics is the science of data. This includes the collection and storage of data, the visuali-
sation and analysis of samples of data, and the interpretation and communication of results.
The overall aim of statistics is to make inferences about a target population of interest based
on a random sample.

Figure 1: The statistical inference process

People tend to assume that statistics involves complex analysis methods but often, the simplest
approaches can be the most effective. In this course, we will not focus on analysis methods.
Instead, we will be focusing on thinking statistically.

In general, statistical thinking involves describing data and complex systems in relatively sim-
ple terms whilst acknowledging uncertainty that exists. The process of statistical thinking
involves critically appraising available data, identifying patterns using visualisations and sum-
maries, and communicating results in a clear, concise manner. Statistical thinking could be
thought of as data-driven critical thinking.
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Why statistical thinking?

Statistical thinking is a necessary skill, not just in work but in personal lives too. We are
constantly bombarded by data via the news and social media. Often the claims made here
are exaggerated or skewed to fit a certain narrative. Thinking statistically allows us to sift
through all these conflicting claims and make our own minds up based on evidence.

Course content

In this course, we will not be introducing any complex analysis methods. Instead, we will
be focusing on statistical thinking. This involves thinking critically about data, identifying
patterns, and describing the data in relatively simple terms.

Topics that will be covered in this course include:

• The importance of a clear, well-defined research question and how to formulate this
• Common biases and how to recognise them
• Data visualisation as a tool to explore data, investigate trends, and convey important

messages
• Summarising data and quantifying differences or trends
• Interpreting inferential statistics

License

I believe that science should not be behind a paywall, that is why these materials are available
for free online, licensed under a CC BY-SA 4.0 licence.
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1 Research questions and biases

1.1 Defining research questions

Arguably, the most important step in carrying out statistics is to specify a clear, answerable
research question. Often, research questions are not formally documented but they are key to
ensuring we are using appropriate data and methods to provide the most suitable advice.

A research question must be fully specified before any data are collected or any analysis plans
have been decided. Although there are infinite research questions that statistics can be used
to address, all must contain certain elements. These are a target population and an outcome
of interest. If an analysis requires a comparison between groups, these must also be clearly
specified in the research question. One way to ensure that a research question has been
correctly specified is to use the PICO approach:

P opulation

I ntervention (optional)

C ontrol (optional)

O utcome

Population

First, we must clearly specify a target population of interest. The population described must be
as specifically as possible and contain all important characteristics that define the population.
This is particularly important in situations where the definition of a characteristic may change
or be unclear.

For example, the Offender Management Statistics categorise age into three groups: juveniles,
young adults, and adults. Rather than defining a population simply as male young adults, we
would give the full definition: male offenders who were aged between 18 and 20 at the time of
sentencing.
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Intervention

Although not necessary for all research questions, if a study involves a comparison between
groups, these groups must also be fully defined and included. The intervention in a research
question could be some intervention, procedure or treatment applied to the target population.
However, in some cases this grouping definition is not an intervention at all, it could be an
exposure of some kind or a characteristic that differs between the groups we are observing and
comparing.

Comparison

If an ‘intervention’ group is specified in the research question, the comparison or control group
must also be clearly defined. As with intervention, this could involve some intervention or
treatment received by the group or it could be a characteristic that differs between groups.

Note

Comparison and outcome groups are optional. Research questions can be fully deter-
mined by the population and outcome if no comparisons are required.

Outcome

The outcome of interest defined in the research question must be measurable, specific, and
relevant to the question we are aiming to answer. It is particularly important to correctly
specify the type of variable used for the outcome as this determines the most appropriate
visualisations, summaries and analyses.

1.2 Types of variables

Variables, such as those defined in the outcome of our research question, can be classified as
either numeric or categorical.

Numeric variables are measured on a number scale. If the outcome can only take whole
numbers, this is referred to as a discrete numeric variable. Alternatively, if the outcome
can take any value on a numeric scale, including with decimal places, this is known as a
continuous numeric variable.

Categorical variables are classified based on the number of groups or categories they
consist of. Categorical variables that only have two categories (e.g. yes/no, positive/negative)
are known as binary variables. Categorical variables with more than two categories
are classified as either ordinal where categories have an order (e.g. low/medium/high,
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never/sometimes/often/always) or nominal where there are no ordering to categories
(e.g. marital status, ethnicity).

1.3 Examples of research questions

We wish to carry out a study to explore whether a plant-based diet reduces cholesterol levels
in obese individuals. Before we look at any data or consider the type of analysis to use, we
must convert this into an answerable research question.

Using the PICO method can help determine the important information needed:

• The target population of interest here is obese adults. However, these terms must be as
specific as possible and fully defined. Therefore, the P in PICO becomes people aged 18
or over with a BMI over 30.

• The Intervention is a plant-based diet.

• The Comparison group will be any diet that is not plant-based, or the target population’s
usual diet.

• The Outcome of interest is the change in cholesterol from the beginning of the study
until some end point. This is a continuous numeric variable that is measurable (if the
necessary tests are available) and comparable between the groups.

1.4 Biases

Whether the data we use to answer our research question is collected by ourselves or taken from
a published source, it is important to consider potential biases, or errors, that may be present.
Unfortunately most data collection methods are inherently flawed, this makes it especially
important to be transparent about the limitations of the data and analysis we provide.

There are many different types of bias that can arise at different stages of an analysis. Here,
I will introduce some of the most common types with examples.

Selection bias

Selection bias occurs when some data are more likely to be included in a sample than others.
One of the key requirements of statistical analysis is that a sample must be random and
representative of the target population in our research question. If this is not the case, we may
not be able to make inferences about the target population and will not be able to answer the
research question.
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For example, we are interested in whether one hour of yoga per day improves depressive
symptoms in adults living in the UK with anxiety and depression. We ask GPs around
the UK to suggest patients from their surgery that are currently being treated for anxiety
and depression to take part in the study. If the doctors deliberately selected the patients
they thought would benefit most from the yoga classes, i.e. those with the highest baseline
depressive symptoms, this sample would not be random and the results would be impacted by
selection bias.

Recall bias

Recall bias occurs when participants are asked to recall past events or experiences as part of a
study. These recalls will differ in accuracy and completeness between participants, potentially
introducing bias into the variables.

For example, in a study investigating the impact of ultra processed food on the rates of heart
disease, participants were asked to recall how many ultra processed foods they had consumed
in the past week. Most participants are likely to forget some of the food they had eaten over a
week, and the accuracy of this recall is likely to differ between participants. An improvement
to this would be to ask participants to keep a food diary and record their intake at the time.

Confirmation bias

Confirmation bias is the tendency to analyse or interpret data in a way that supports precon-
ceived ideas. Unfortunately, confirmation bias is inherent to human nature and can be difficult
to spot. It is also one of the reasons that statistical thinking, rather than simply trusting our
gut instinct, is so important. The best way to counteract confirmation bias is to acknowledge
any pre-conceived ideas or expectations of results before looking at data and being aware of
these throughout the process.

1.5 Missing data

Another potential source of bias comes from the existence of missing data. Missing data
are observations that were intended to be collected but were not. Examples of missing data
include:

• Probation practitioners were asked to record details into an administrative system for
the purpose of analysis. Practitioners in a certain area were very busy due to a large
caseload and did not collect all of the information as it was not relevant to their work.
This means that the data added onto the system is incomplete.
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• A questionnaire is sent out to households in a local authority, asked for information about
household income and employment history. Some households consider these questions
too personal and did not fill in the information.

• A clinical trial involves taking blood samples from participants to analyse. Some samples
are dropped on the way to the lab and their results are unusable. The analysis dataset
contains blank spaces where these results would be.

Where missing data exist, it is important to consider the potential reasons for this and whether
these reasons could introduce bias into the sample. For example, if the reason for data being
missing is related to the missing values themselves, the observed dataset is no longer random
or representative. This is a requirement of making inferences about the target population.
There could also be systematic differences between the observed data and the hypothetical
missing values. Therefore, analysing incomplete data as if it were complete could lead to
invalid conclusions.

Unfortunately, the true reason for missing data and the impact of this on the results will not be
known as the data do not exist. When dealing with missing data, our main aim is to identify
the most likely reasons and be transparent about the implication of this on our analysis. Failure
to recognise and deal with missing data can produce invalid, often misleading results. At a
very minimum, we must be transparent about the number and type of missing data within our
sample. This should be done before analysis methods are considered as sometimes they may
require alternative approaches to overcome the bias introduced by missingness.

11



Exercise 1: research questions and missing
data

Question 1

For each of the following research questions, identify the Population, Intervention and
Comparison (if applicable) and the Outcome.

a. Does the introduction of a 4-day working week increase productivity in government
departments?

b. What is the average time between an offence being committed and case completion for
defendants dealt with at magistrates’ courts in the North West of England?

c. How has the prison population in England and Wales changed compared to pre-pandemic
levels?

Tip

When breaking down a research question into PICO, it can help to picture the data set
we would need to answer it.
The rows/observations will represent our target population.
The outcome will be the variable that we are measuring on this target population (not
the average or difference that we will use this variable to calculate).
If there are comparison groups in the research questions, these would be included in the
data as a categorical variable.

Question 2

Probation practitioners were asked to record details in an administrative system for analytical
purposes not directly related to their work. Some practitioners were busy and forgot to record
the data on the system, leading to holes in the data. Give a scenario where this would introduce
bias into the analysis, and another where this would not cause bias.
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2 Data visualisation

Data visualisation is a powerful tool with multiple important uses. First, visualisations allow
us to explore the data, identify potential outliers and errors, or check that the variables behave
in the way we would expect them to if they have been recorded correctly. Visualisations can
also be used as an analysis tool, allowing us to identify trends in the data or differences between
groups. Finally, visualisations can help to convey messages to an audience in a clear, concise
way that is often more powerful than presenting them using numbers or text. In some cases,
data visualisations can show results so clearly that further analysis is arguably unnecessary.

A gruesome example of this was found after the arrest of Harold Shipman, one of Britain’s
most prolific serial killers. Harold Shipman was convicted of murdering hundreds of his mostly
elderly patients with an overdose of opiates, often administered in their homes. After his con-
viction, investigators questioned whether he could have been caught earlier. The visualisation
below shows the time at which patients died who were registered at other local GP surgeries
against the time of death for those who saw Harold Shipman. The difference is so stark that
it can be argued that no formal statistical analysis would be required to confirm this.
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Often, trends and differences in data will not be so obvious, but it is important to understand
which data visualisations can be useful in different settings. This section will introduce some
of the most common data visualisations, provide examples of these using real data, and high-
light important characteristics of each visualisations, as well as potential flaws to be aware of.
Throughout the section, we will consider principles of data visualisation that must be followed
to ensure they are informative, compelling, truthful, and accessible.

2.1 Choosing the most appropriate visualisation

The most appropriate choice of visualisation will depend on the type of variable(s) we wish to
display, the number of variables and the message we are trying to disseminate. Common plots
used to display combinations of different types of data are given in following table:

Table 2.1: Table showing the most common data visualisation methods by number and type
of variable(s).

Number of variables Type of variables Visualisation

Frequency table
Categorical

Bar chart

Numerical Histogram

Spatial Map

One variable

Temporal Line plot

Frequency table
Two categorical

Stacked/side-by-side bar chart

Dot plot
One numeric, one categorical

Box plot

Two variables

Two numerical Scatterplot

> 2 categorical Table
> 2 variables 2 numeric, one categorical

or > 2 numeric
Scatterplot with different
colours/symbols/sizes
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Tip

This list of common visualisations is far from comprehensive. If you would like a list of
more options, including some non-standard graphs, visit the From Data to Viz website.

2.2 Visualising a single, numeric variable

Histograms are a common data visualisation method for a single numeric variable. His-
tograms consist of bars that show the number of observations in a sample that lie within a
numeric range: the higher the bar, the more common those values are. They are used to check
the distribution (or shape) of variables, and are useful to identify outliers and potential errors
in the data. The distribution we are most often checking for is the normal distribution,
also known as a bell-shaped curve, which occurs naturally in many variables and is a common
assumption for many statistical methods.

A normal distribution is characterised by a single peak in the centre of the histogram, also
known as the average or mean. The histogram will then have two symmetric tails that show
more ‘extreme’ values become less common as they are further from the average:

The histogram below shows the settlement funding assessment (SFA) for each local authority
in England in 2015 given in millions of pounds:

The first thing we can see from this histogram is that it is clearly not a normal distribution.
The peak of the sample distribution is close to 0, and there is a very long upper tail which is
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Figure 2.1: Histogram showing the settlement funcing assessment (SFA) in English local au-
thorities in 2015.

not symmetrical to a lower tail. Another important thing to note is the presence of outliers.
Most local authorities had an SFA of approximately £300 million or less. There are two
observations that have values much larger than this which must be investigated.

The highest value on the histogram represents the Greater London Authority with an SFA of
£1,163 million, the second is from Birmingham with an SFA of £612 million. Observations
should only be removed from a sample if they should not be included in an analysis. The
Greater London Authority is a collection of smaller local authorities that are already in the
dataset. This value must be removed before any further analysis is carried out to avoid dupli-
cating observations. However, the Birmingham observation represents a single local authority
that has a large value because it covers a large population. The Birmingham observation
should not be removed from the analysis as it is not an error, but we should make a note
that there is an outlier in the SFA variable as this could influence certain results if further
statistical analysis is carried out on this data.

The updated histogram, without the Greater London Authority duplicate, is given below.
Notice that the x axis limits have changed:

When the objective of a histogram is to check the distribution of a numerical variable, a density
curve can be added to the histogram which aims to smooth the bars into a continuous curve.
These curves are usually easier to compare to a distribution of interest:

16



0

50

100

150

200

0 200 400 600
Settlement funding assessment (£ millions)

F
re

qu
en

cy

Figure 2.2: Histogram showing the settlement funcing assessment (SFA) in English local au-
thorities in 2015, with Greater London Authority duplicate removed.

The density line is far from symmetric, indicating a skewed distribution. A skewed (non-
normal) continuous variable is not a sign of an error. In this example, a highly skewed variable
is to be expected. The majority of local authorities in England consist of small populations with
a minority representing large cities (for example, the Birmingham local authority identified
above) with much higher spending.

As with all data visualisations, it is important to ensure that a histogram is showing the data
in the clearest way. Histograms’ appearances are heavily influenced by the width of the bars
(sometimes referred to as ‘bins’) shown on the plot. The number of bars on a histogram must
be large enough to detect important trends and peaks in the data, but not so large that the
shape becomes overwhelming and difficult to interpret.

Figures Figure 2.1 - Figure 2.3 have 30 bars (the default set by some statistical software
packages). When we reduce the number of bars to 15, the curve becomes smoother but the
dip in distribution at around £50 million is no longer visible:

If the number of bars is increased to 100, we can see there are many small peaks in the data
that we were not able to see with wider bars, however the overall distribution of the data
becomes more difficult to interpret:

When creating histograms, it is important to try different numbers of bars to ensure that
important trends are not missed. When interpreting histograms, we must keep in mind that
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Figure 2.3: Histogram showing the settlement funcing assessment (SFA) in English local au-
thorities in 2015 with density line added.

a very small number of bars may be hiding something.

2.3 Visualisations to compare numeric variables between groups

Although histograms are useful to visualise the distribution of a numeric variable across a whole
sample, we often want to compare a variable between groups. The choice of visualisation will
depend on which aspect of the numeric variable we are interested in comparing, for example the
entire distribution or some kind of summary of the groups. In this section, we will compare the
settlement funding assessment (SFA) of local authorities in England in 2015 from the previous
section between regions, using visualisations that show an increasing amount of information.

2.3.1 Bar chart of averages

The simplest, least informative comparison of SFA between regions would be to show the
average of each group. This can be done using a bar chart which will consist of a bar per
region. The length of each bar will represent the average SFA for the region it represents. The
most common choice of average for charts of this sort is the mean. We shall discuss in later
sections why this may not be the most appropriate choice.
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Figure 2.4: Histogram showing the settlement funcing assessment (SFA) in English local au-
thorities in 2015.

This bar chart shows that local authorities in London had the highest SFA on average, while
the East Midlands and South East had the lowest. The chart is clear and easily interpretable
but is missing a considerable amount of information. In particular, the chart does not give
any information about the spread of values in each group. Although the group averages look
different, there is likely overlap in values in each of the groups.

2.3.2 Box plot

A common visualisation to compare average values across groups, whilst also showing measure
of spread, is a boxplot. Boxplots contain a measure of the centre of each group, given by the
median, surrounded by a box with limits defined by the interquartile range (IQR). The IQR
is the difference between the 75th percentile (the value below which 75% of the sample lies)
and the 25th percentile (the value below which 25% of the sample lies), giving the range of
the middle 50% of the sample. The box has whiskers attached that give the range excluding
outlier, and outliers are highlighted as points on the plot. The definition of outlier differs
across software, however a common definition used for the boxplot below is any observation
that lies further than 1.5 times the IQR from the box.

This boxplot shows far more information than the bar chart of averages. We can clearly see
the outlier which was identified earlier as Birmingham. We can also see that, although London
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Figure 2.5: Histogram showing the settlement funcing assessment (SFA) in English local au-
thorities in 2015.
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Figure 2.6: Bar chart showing the mean SFA in English regions in 2015.
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Figure 2.7: Boxplot comparing the SFA between regions of England, 2015.

has the highest average SFA, there is quite a large overlap of values with other regions. The
East Midlands, East England, and South East regions had a large number of outliers and a
very small IQR which should be investigated further.

The dataset shows that the many outliers are not errors, these regions consist mostly of very
small local authorities with very low spending and few towns and cities that have substantially
higher spending. Therefore, any larger areas in these regions will appear as outliers compared
to the very small local authorities.

2.3.3 Violin plot

We gain more information from the box plot compared to the bar chart but we are still losing
a lot of information by only showing summary measures. We can see the range of the middle
50% but we are not able to see how those values are distributed. Violin plots show the
density of groups, similar to the density curve added to the histogram previously but rotated
90 degrees. Violin plots show the full sample and are particularly useful where a distribution
does not have a single peak (which is assumed by box plots).

One benefit of this violin plot compared to the boxplot is that we can see the very bottom-
heavy distribution of SFA in the East Midlands, East England and South East regions which
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Figure 2.8: Violin plot comparing the SFA between regions of England, 2015.

explains the large number of outliers in the boxplots. However, the violin plot of SFA per
region is difficult to interpret with so many regions.

2.3.4 Dot plot

As violin plots are produced using density estimates from the data, they are still not giving
all information from the sample. They are also not very useful where there are long-tailed
distributions, as we can see in the West Midlands region in the previous plot, as they can give
the illusion of data existing where it does not (between the outlier and the rest of the group).
To overcome these issues, we can show every observation in the sample as points, separated
into groups, in a dot plot. Dot plots have the same axes layout as the previous plots, with
grouping on the x axis and the numeric variable on the y-axis.

Without checking, this dot plot appears to show every local authority’s SFA grouped by region.
However, there are many local authorities that have very similar SFA values that can not be
seen as they are currently lying on top of one another. To overcome this, a dot plot can be
adapted by spreading the points out along the x-axis, also known as jittering:

By jittering the points, we can now see the differences in the distribution of points in each
region. The outlier of Birmingham is clearly visible, as are the bottom-heavy distributions of
some regions. We can clearly see the differences in the number of observations in each region.
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Figure 2.9: Dot plot comparing the SFA between regions of England, 2015.
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Figure 2.10: Dot plot comparing the SFA between regions of England, 2015. Dots are jittered
to show them clearly.

23



For example, it is clear that the North East region has less local authorities and less variability
compared to other regions. One thing that is not clear from this dot plot that was clear from
previous plots, is that the London region had the highest average SFA.

2.3.5 Multi-layer plots

Sometimes a single choice of plot will not be enough and multiple visualisations are needed.
In this case, we may wish to express the differences in summary statistics between regions,
without losing information about the overall distribution and density of the sample. One
solution would be to provide a boxplot with points added as an extra layer to the plot:

0

200

400

600

L NW NE YH WM EM EE SW SE
Region

S
et

tle
m

en
t f

un
di

ng
 a

ss
es

sm
en

t (
£ 

m
ill

io
ns

)

Figure 2.11: Dot plot comparing the SFA between regions of England, 2015, overlayed with
boxplots.

This final plot clearly shows the differences in the average SFA between regions, the outlier
in the West Midlands region (Birmingham), and the differences in the shapes of distributions
between regions. Although we have added an extra layer to each plot, the message of both is
still clear and easily interpretable.
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Warning

Show as much relevant data as possible, maximising the amount of information given in
the smallest amount of space. This does not mean showing all of the data. Over-
loading a plot can lead to confusion. Adding too many layers to the same visualisation
can make it less informative, hiding important messages.

2.4 Visualising a single, categorical variable

Visualising categorical variables involves describing their distribution between categories. This
can be done using counts or the proportion of observations in each group.

2.4.1 Frequency table

Both counts and proportions/percentages can be displayed using frequency tables. For
example, the number of recorded crimes in the East Midlands in 2023, categorised by police
force:

Table 2.2: The number and percentage of crimes recorded by police area in the East Midlands
region of England, 2023.

Area name Total recorded crimes Percentage of total crimes

Derbyshire 90,181 21.51 %

Leicestershire 103,806 24.76 %

Lincolnshire 57,234 13.65 %

Northamptonshire 62,116 14.82 %

Nottinghamshire 105,899 25.26 %

Frequency tables can provide a lot of information and, where there are not many categories,
can be easy to interpret. However, they can quickly become overwhelming when there are
many categories displayed, patterns in the data can be harder to spot, and they can look
boring.
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2.4.2 Bar chart

The same data can be displayed using a bar chart, the categorical equivalent of a histogram,
where the length of each bar represents the number of observations in the category:
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Figure 2.12: Bar chart showing number of recorded crimes in the East Midlands region of
England, 2023.

Although this bar chart is also not particularly interesting, our eyes are immediately drawn to
the differences between groups. We can immediately see that Lincolnshire and Northampton-
shire had fewer recorded crimes than the other police force areas, and that Leicestershire and
Nottinghamshire had the highest number of recorded crimes and were at a similar level.

Bar charts can be formatted to draw attention to important results, for example by ordering
the bars from largest to smallest frequencies to highlight the differences in groups (note that
this is only appropriate where there is no ordering to the groups):

Colours can also be used to emphasise groups that are of interest to the audience. For example,
if this graph was displayed as part of an investigation into crime levels in Derbyshire, we could
change the colour of this bar to draw attention to it:
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Figure 2.13: Bar chart showing number of recorded crimes in the East Midlands region of
England, 2023. Bars are ordered to make the differences in police areas clearer.

Tip

Characteristics such as colours that naturally draw people’s attention within a visualisa-
tion are known as preattentive attributes. There are several categories of preattentive
attributes that can be used to make important messages clearer:

• Spatial attributes (e.g. spatial grouping, enclosure, length, and width),
• Colour attributes (including differences in colour hue or intensity),
• Attributes of form (including size and shape).

We can also swap the axes so that the bars run horizontally and the frequencies are shown on
the x axis. This can sometimes make the ordering and length of the bars easier to read, or
can make the graph more compact where the group labels are long:

When creating or interpreting visualisations, we want to ensure the information being shown
is not misleading or distorted in any way. One way to avoid misleading readers is to follow the
principle of proportional ink. This means that the amount of ink used in a visualisation
should be proportional to the quantities it is representing. A common example of a violation
in this principle is where a bar chart’s x-axis does not begin at 0. The differences in the lengths
of bars is no longer representative of the differences between groups, leading to a distortion in
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Figure 2.14: Bar chart showing number of recorded crimes in the East Midlands region of
England, 2023. Derbyshire has been highlighted to draw readers’ attention.

the message.

For example, using the recorded crime data, we could set the frequency axis to begin at 50,000
as all counts were higher than this:

Although the plot shows the same information as the others, the smaller counts appear much
smaller than the original plot and the difference between the highest and lowest values is
more pronounced. Although this plot is showing the same information, this small change has
affected how our brains interpret the results.

2.4.3 Pie chart

An alternative approach to summarising and visualising categorical variables is to use propor-
tions. One benefit of considering proportions as opposed to the counts is that they allow us to
take account of the sample size and put counts into context. Proportions of a single sample
can be visualised using a pie chart. Each ‘slice’ of the pie represents a category and the size
of the slice represents the proportion of the sample that lies within that group.

For example, a pie chart can be used to display the same data as Figure 2.12 but with each
area given as a proportion of the whole region:
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Figure 2.15: Horizontal bar chart showing number of recorded crimes in the East Midlands
region of England, 2023.

Although Figure 2.17 shows the same data as Figure 2.12, it is harder to compare the groups
as the proportions are quite similar. One possible solution to this issue is to add labels with
the values onto each slice:

Warning

Research shows that people’s perception of dots, lines and bars are more accurate than
distinguishing between angles, proportions and colour hues. This is why pie charts, are
harder to interpret than bar charts, particularly where differences between groups are
small.
Pie charts are generally discouraged because they are more difficult to interpret than
bar charts or frequency tables. If pie charts are used, annotations such as the labels in
Figure 2.18 should be used to avoid misinterpretation.

2.5 Visualisations to compare categorical variables between groups

Bar charts introduced in the previous section can be extended to include a further grouping
variable and used to compare the distribution of observations between categories across groups.
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Figure 2.16: Bar chart showing number of recorded crimes in the East Midlands region of
England, 2023. The y-axis starts at 50,000 rather than 0.

Stacked bar charts are used to compare the proportion of observations in different categories
across groups, whereas side-by-side bar charts compare counts.

2.5.1 Stacked bar chart

A stacked bar chart is useful where the total number in each group is important, as well as
the distribution of these groups between categories. As with a standard bar chart, the total
number of observations in each group determines the length of the bar. These bars consist of
multiple smaller bars that represent the number of observations in each category.

For example, using the data from the previous section, we can compare the overall number
of recorded crimes, as well as the different types of crimes, between police forces in the East
Midlands:

This bar chart clearly shows that Nottinghamshire and Leicestershire had the highest recorded
crimes, and Lincolnshire and Northamptonshire had the lowest, which we had already seen
previously. In addition to the findings from the previous bar charts, we can now see that
the largest proportion of crimes across all police forces were violent crimes and theft. The
distribution across types of crimes seems similar between police forces. If the distribution
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Figure 2.17: Pie chart showing the proportion of recorded crimes in each area of the East
Midlands region of England, 2023

between the types of crimes is more important than comparing the total number per police
force, we may also consider a proportion stacked bar chart.

2.5.2 Proportion stacked bar chart

Proportion stacked bar charts are an alternative to the stacked bar chart which compares the
proportion of each group that lie in different categories. The length of each bar is equal to 1
(representing the whole group size), and consists of smaller bars representing the proportion
of the group in a category. These are particularly useful when differences in group sizes are
not important, but the relative distributions between groups are.
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Figure 2.18: Pie chart showing the proportion of recorded crimes in each area of the East
Midlands region of England, 2023. Labels have been added for more context.
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Figure 2.19: Stacked bar chart showing the total number of recorded crimes in the East Mid-
lands regions of England, 2023, shown by police force and crime type.

The proportion bar chart confirms that the distribution of different crime types is similar
across police forces, regardless of the total number of crimes.

2.5.3 Side-by-side bar chart

Side-by-side bar charts allow us to compare the number of observations in each category
between groups. The smaller bars that make up a stacked bar chart are placed next to one
another, meaning the length of bars now represents the total observations per category per
group. They are useful when comparison of the overall total of groups is not important, and
where there is a small number of groups and/or categories to compare between.

The previous example would require 45 bars in total (9 bars for each of the 5 police forces).
This would be almost impossible to show clearly on one axis, so for this example, we will
compare the three most common types of crime between forces: violent, theft, and public
order.

All three bar charts show the same information in different formats. The most appropriate
choice of these would depend on the motivation behind the plot. For example, are we interested
in comparing the overall total crimes between regions? In which case, a stacked bar chart would
be most useful. Would we prefer to compare the distribution of the different types of crimes
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Figure 2.20: Side-by-side bar chart showing the number of recorded violent, theft, and public
order crimes, separated by police area, from the East Midlands region, 2023.

between regions? Then a proportional stacked bar chart might be helpful. Or is the intention
of the plot to compare the total of a certain type of crimes between regions, rather than the
overall total? Then a side-by-side bar chart would be most appropriate.

2.6 Visualisations for two or more numeric variables

Visualising single variables is important when checking the data for errors and distributions.
However, we often want to investigate relationships between multiple variables in a dataset.
When exploring the relationship between two numeric variables, we should consider a scatter-
plot. One of the numeric variables is displayed on the vertical, or y-axis (often the outcome of
interest or dependent variable), and the other is displayed on the horizontal, or x-axis (usually
the explanatory variable). Each observation is represented with a point on the graph area.

Scatterplots are useful to explore the data and identify outliers/errors which may not be as
clearly visible in univariate plots. Scatterplots are also useful to generate hypotheses about
the relationship between variables. For example, whether they are positive or negative.They
can also explore the nature of relationships in terms of whether they are linear or not, which
is a requirement of some statistical methods.
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The scatterplot below shows the relationship between cancer mortality in US counties in 2015
and the level of poverty in these counties. Cancer mortality rate has been given on the y-axis as
this is the outcome of interest which we think may be dependent on poverty (the explanatory
variable):
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Figure 2.21: Scatterplot showing the relationship between cancer mortality rate and poverty
in US counties in 2015.

The scatterplot shows there are no unexpected outliers, and there appears to be a positive
linear relationship between these variables. That is, as the percentage of the population living
in poverty increases, the cancer mortality appears to increase on average. Note that we are not
making inferences about the total population, nor are inferring causation from this graph.

This potential relationship can be made clearer by adding a line of best fit to the scatterplot.
There are different methods of estimating a line of best fit, the most common being a linear
model. Linear models produce a line that minimises the difference between each point and the
line drawn. Alternative methods are available where a linear relationship is not appropriate.

Adding a line of best fit to Figure 2.21 highlights the positive association between poverty rate
and cancer mortality. Although the line does not fit the data perfectly, it gives an estimation
of the direction and magnitude of this relationship which can be investigated formally using
statistical analysis.

Scatterplots can be extended to show additional variables by changing the appearance of points.
Categorical variables can be added using a difference colour or symbol for each group:
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Figure 2.22: Scatterplot showing the relationship between cancer mortality and poverty in US
counties in 2015. A line of best fit has been added.

Unemployment level has been added to the plot using different colours, with the key given
in the legend. On average, areas with high unemployment appeared to have higher levels of
poverty and cancer mortality. We would expect unemployment and poverty level to be highly
related and, given that higher levels of poverty appeared to be associated with higher mortality,
also related to higher cancer mortality rates.

If we believed that the relationship between the variables given on the x- and y-axes differed
between groups, we could also provide a line of best fit per group rather than for the sample
as a whole:

The lines of best fit have approximately the same gradient, indicating that the relationship
between poverty and cancer mortality is approximately equal. However, the line for high
unemployment is consistently higher than the other group which shows this group had a
higher mortality rate on average at different poverty levels.

Numeric variables can also be added to scatterplots by adjusting the colour or size of the
points based on each observations’ value. For example, the average age of each county could
be added using a sequential colour scheme:

The relationship between age, poverty and cancer mortality is hard to decipher as most counties
have similar average ages which is not obvious with a continuous colour palette.
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Figure 2.23: Scatterplot showing cancer mortality and poverty levels in US counties in 2015,
compared between unemployment levels.

Warning

When choosing a colour palette, be sure that all colours are distinct to everyone, including
those with colour-vision deficiencies. To help check this is the case, use a colour blindness
simulator to see what a visualisation looks like under different types of colour blindness.
For continuous data avoid cyclical palettes, such as the rainbow palette, to avoid confusion
between high and low values.

Additional variables should only be included in data visualisations where they are needed and
where they do not confuse the original message. Overloading a visualisation can make it hard
to interpret and lose information. In some cases, it is better to have multiple, simple (but
clear) plots rather than a single, complex plot.
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Figure 2.24: Scatterplot showing cancer mortality and poverty levels in US counties in 2015,
compared between unemployment levels. Lines of best fit have been added for
each group.
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Figure 2.25: Scatterplot showing cancer mortality, age, and poverty levels in US counties in
2015.

2.7 Visualising temporal data

Where a variable has been measured repeatedly over time, we want to ensure that any visu-
alisation makes it clear that these observations are related. The most common visualisation
used for temporal data is a line graph. Line graphs have the measure of time along the x-axis
and the variable measured over time on the y-axis. Each observation’s values are connected
over time using a line. Line graphs are useful to explore trends over time, for example whether
values have been increasing or decreasing.

This line graph shows the number of violent crimes recorded in England between 2010 and
2020. From this simple graph, we can clearly see that there is a strong, downward trend. That
is, the number of violent crimes recorded has decreased over the 10-year period.

Line graphs are not only useful at determining overall trends but also checking the data for
inconsistencies. For example, all years experienced a decrease in recorded crimes apart from
2014 - 2015 where there was an increase. We could go back and check the source of the data,
make a note of potential reasons for this difference, and be sure to communicate this as part
of our interpretation.

Line graphs can be used to compare trends between different groups by adding multiple lines
to the same graph. For example, the following graph shows the number of magistrate court
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Figure 2.26: Line graph showing the total recorded crimes in England between 2010 and 2020.

cases, by type, between 2012 and 2023. Each case type has a different coloured line, and the
interactions between lines are clear:

This line graph is the perfect example of where a visualisation is more powerful than simply
writing results in a table of texts. The drastic drop of disposals due to closure of magistrates
courts during the COVID-19 pandemic is stark. This is coupled with the vast increase of
outstanding cases which we can see has not returned to pre-COVID levels. This can be
explained by the other lines on the graph as we can see that the number of receipts are almost
back to previous levels, whereas the number of disposals has still not quite recovered.
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Figure 2.27: Line graph showing the number of magistrate court cases by type in England,
between 2013 and 2023.
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Exercise 2: data visualisation

Below are three visualisations taken from the Offender Management Statistics report in 2023.
Interpret these graphs, note any trends, any surprising results, and anything you would check
in the data if this was your work. Make a note of things the visualisation did well and ways
in which it could be improved.

Question 1

Figure 2.28: Prison populations, March 2003 to 2023
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Question 2

Figure 2.29: Number of offenders under Probation Service supervision, 31 December 2013 to
2023
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Question 3

Figure 2.30: Proportion of outstanding cases at the Crown Court by grouped age, Q1 2014 –
Q4 2023
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3 Summarising data

Summary statistics allow us to quantify and explore different parts of a sample of data. They
can be provided alongside data visualisations introduced earlier in the course to support results
and interpretations.

Note

The summary statistics introduced in this section describe only the sample data so cannot
be used to answer research questions fully unless all data on the target population has
been collected.

The choice of summary statistics will depend on the type of variable(s) we wish to explore, the
distribution of these variable(s) and the aspect of the data we would like to quantify. When
interpreting summaries provided from analysis that has already been completed, it is important
to check that the most appropriate summaries have been used and that interpretations of them
will be valid.

3.1 Summarising categorical variables

To summarise a single categorical variable, we simply need to quantify the distribution of
observations lying in each group. The simplest way to do this is to count the number of
observations that lie in each group, as we have seen previously displayed in frequency tables.
However, a simple count can be difficult to interpret without proper context. Often, we wish
to present these counts relative to the total sample that they are taken from.

The proportion of observations in a given group is estimated as the number in the group divided
by the total sample size. This gives a value between 0 and 1. Multiplying the proportion by
100 will give the percentage in each group, taking the value between 0 and 100%.

For example, the number of recorded crimes in the East Midlands in 2023, visualised in Fig-
ure 2.12 and Figure 2.17, can be presented as percentages and proportions:

Area name Total recorded crimes Proportion of total crimes Percentage of total crimes

Derbyshire 90,181 0.2151 21.51%
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Area name Total recorded crimes Proportion of total crimes Percentage of total crimes

Leicestershire 103,806 0.2476 24.76%

Lincolnshire 57,234 0.1365 13.65%

Northamptonshire 62,116 0.1482 14.82%

Nottinghamshire 105,899 0.2526 25.26%

Both the proportions and percentages give the same information (percentage is simply pro-
portion multiplied by 100) but percentages are generally easier to interpret. In this example,
Nottinghamshire had the highest proportion of crimes with just over a quarter (25.26%) of the
total. This was closely followed by Leicestershire.

In cases where the proportion and percentage in a given group is very small, we may wish to
multiply the proportions by a larger number to make values easier to interpret. These values
are known as rates and are interpreted as the value per the number multiplied by. For example,
if the proportion in a group was 0.0005, this could be multiplied by 10,000 to give a rate of 5
per 10,000.

3.2 Summarising numeric variables

Numeric variables are typically summarised using the centre of the variable, also known as
the average, and a measure of the spread of the variable. The most appropriate choice of
summary statistics will depend on the distribution of the variable. More specifically, whether
the numeric variable is normally distributed or not. The shape/distribution of a variable is
typically investigated by plotting data in a histogram.

3.2.1 Measures of centre

The average of a numeric variable is another way of saying the centre of its distribution. Often,
people will think of the mean when trying to calculate an average, however this may not always
be the case.
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Mean

When data are normally distributed, the mean is the central peak of the distribution. This
is calculated by adding together all numbers in the sample and dividing it by the sample size.
However, when the sample is not normally distributed and the peak does not lie in the middle,
extreme values or a longer tail will pull the mean towards it. This means that where data are
not normally distributed, the mean will not be the centre and the value will be invalid. Where
this is the case, the median should be used instead. The median is calculated by ordering the
numeric values from smallest to largest and selecting the middle value.

Let’s consider the sample below of 10 students’ heights in centimeters from a high school
class:

142.23, 149.58, 146.06, 160.42, 174.64, 172.54, 148.67, 143.00, 173.11, 168.72

To calculate the mean height from this sample, we add these values together, giving 1578.97cm,
and divide the total by 10. Therefore, the mean height of these 10 students is 157.897cm.

The median height is calculated by ordering the heights from smallest to largest:

142.23, 143.00, 146.06, 148.67, 149.58, 160.42, 168.72, 172.54, 173.11, 174.64

We then take the middle value. As the sample size is even, the median will lie between two
values - the 5th (149.58cm) and the 6th (160.42cm). To calculate the median, we add these
values together and divide this by 2. The median of this sample is therefore 155cm.

When data are normally distributed, the mean and median will give the same, or very similar,
values. This is because both are measuring the centre. However, when the data are skewed,
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the mean and median will differ. We prefer to use the mean where possible as it is the more
powerful measure. This means that it uses more of the data than the median and is therefore
more sensitive to changes in the sample.

3.2.2 Measures of spread

Generally the measure of the spread of a numeric variable is presented with a measure of
spread, or how wide/narrow the distribution is. As with the spread, the most appropriate
values will depend on whether the sample is normally distributed or not.

The most simple measure of spread is the range of a sample. The range is either presented as
the smallest and largest values from a sample or the difference between these. From the sample
of heights earlier, the range would either be given as [142.23cm, 174.64cm] or the difference
between these values, 32.41cm.

The issue with using the range is that it is entirely defined by the most extreme values in the
sample and does not give any information about the rest of it. An alternative to this would
be to give the range of the middle 50%, also known as the interquartile range (IQR). The
IQR is the difference between the 75th percentile, or upper quartile, and the 25th percentile,
or lower quartile. As with the median, this is calculated by ordering the sample from smallest
to largest. The sample is then cut into 4 and the quartiles are calculated. As with the range,
the IQR can be given as the two values or the difference between them.

The lower quartile of the sample of 10 heights given earlier is the 3rd value in the ordered
sample, 146.06cm, and the upper quartile is the 8th value in the ordered sample, 172.54cm.
We could either present this as two values, or as the difference between them: 26.48cm. This
means that 50% of the sample heights lie between 146.06cm and 172.54cm, or the width of
the middle 50% of this sample is 26.48cm.

Both the range and IQR only use 2 values from the sample. As with the median, these measures
discard a lot of information from the summaries. Where the sample is normally distributed,
the standard deviation (SD) can be used which measures the average distance between each
observation and the mean. The larger the SD, the wider and flatter the normal curve will be;
the smaller the SD, the narrower and taller the curve will be:
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The standard deviation is only appropriate where a numeric variable has a normal distribution,
otherwise this value is meaningless. If a sample is normally distributed, then the entire sample
can be completely described just using the mean and standard deviation, even when the sample
values are not given. As the distribution is symmetrical, the mean and standard deviation can
be used to estimate ranges of values. For example, it is known that approximately 68% of a
sample will lie one standard deviation from the mean, approximately 95% within 2 standard
deviations from the mean, and around 99.7% within 3 standard deviations:
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This knowledge can also be used to check the mean and standard deviation were appropriate
summary statistics, even if we have no other information. For example, we saw earlier a sample
of settlement funding assessment (SFA) values for local authorities in England in 2015. Using
a histogram, it was clear that this sample was not normally distributed. However, let’s assume
that we do not have the data to plot a histogram, instead we are just given the mean, £50.85
million, and the standard deviation, £75.06 million.

If the sample SFA were normally distributed, we would expect approximately 95% of the
values to lie within 2 standard deviations of the mean. That would mean 95% of the values
lying between -£97.26 million and £198.97 million. The SFA for local authorities cannot be
negative, therefore this range would contain a lot of impossible values. This shows that the
mean and standard deviation are not appropriate summaries, and the sample is not normally
distributed.
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Exercise 3: Summary statistics

Question 1

The following line graphs are taken from the Criminal Courts statistics quarterly report, show-
ing the average number of days from offense to completion for defendants at the Crown Court.
Which graph is the most appropriate to display the average time and why?

Figure 3.1: Average number of days from offence to completion for defendants dealt with at
the Crown Court, Q1 2014 – Q4 2023
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Question 2

The mean and standard deviation of waiting times in weeks for hearings in the Crown Court
between 2020 and 2023 are given in the table below. Using this information, what can you tell
about the distribution of these times?

Year Mean waiting time (weeks) Standard deviation waiting time (weeks)

2,020 13.5 10.2

2,021 19.1 15.6

2,022 20.9 13.9

2,023 22.8 14.7
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4 Making comparisons

Often, our research question will involve a comparison between groups, investigating trends
over time, or investigating a relationship between two numeric variables. There are multiple
approaches we can use to compare groups but the correct choice will depend on the outcome
of interest and the type of relationship we are interested in. This section will describe the
most common comparative statistics, their interpretations, and the reasons we may choose to
use one approach over another.

4.1 Comparing a categorical variable between groups

When comparing a categorical variable between groups, we are often comparing the summary
measures that were introduced in the previous section: proportions, percentages, and rates.
These summaries are either compared using the absolute difference or the relative difference.

To demonstrate the difference between these comparisons, let’s consider the number of recorded
crimes in the East Midlands we saw earlier and compare them to the number recorded in the
West Midlands. These crimes are categorised as either violent or non-violent. We wish to
compare the distribution of these types of crimes between the regions, i.e. was the proportion
of recorded crimes that were violent similar between regions. The table below shows the
number and type of crime, along with the percentage of total crimes in each region that were
classified as either violent or non-violent:

Area Recorded crimes Violent crime Nonviolent crimes

East Midlands 419,236 161865 (38.61%) 257371 (61.39%)

West Midlands 572,937 233851 (40.82%) 339086 (59.18%)

The absolute difference is calculated by simply subtracting proportions or percentages between
groups. In this example, the absolute difference in proportions of total crimes that were violent
is (0.408 - 0.386) 0.22, and the absolute difference in percentages is (40.8% - 38.6%) 2.2%. The
West Midlands had 2.2% higher percentage points of recorded violent crimes than the East
Midlands. If we carried out the sums the other way round, we would get a negative number (-
2.2%), indicating a reduction in the percentage points in East Midlands compared to the West.
Absolute differences are interpreted relative to a null value of 0, representing no difference.
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Alternatively, the relative difference is found by dividing one value by another. Unlike the
absolute difference, this will be the same whether we use the proportion or percentage. The
relative difference in the percentage of violent crimes between regions is (40.8% / 38.6%) 1.057.
This means that the percentage of crimes recorded as violent was 1.057 times higher in the
West Midlands compared to the East Midlands. If we wanted to do this comparison the other
way around (comparing the East to West Midlands), we would find a relative difference of
(38.6% / 40.8%) 0.946. Therefore, the percentage of recorded crimes in the East Midlands
that were violent was 0.946 times the percentage in the West Midlands. When interpreting
relative differences, we are comparing the result to a null value of 1, given when both values
are equal. As 0.946 is below 1, this represents a reduction.

4.2 Comparing numeric variable between two groups

The most appropriate method to compare a numeric variable between groups will once again
depend on the distribution of the variable. A comparison can either be made using the differ-
ence in means, where both groups have a normally distributed sample, or difference in medians,
where one or both of the samples are skewed.

Earlier in the course, we saw the settlement funding assessment (SFA) for each local authority
in England in 2015. We may want to compare this between two regions, for example between
the North West and the Yorkshire and Humber regions. Before choosing the most appropriate
comparison, we must check the distribution of SFA in each region using a histogram:
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As with the full sample, both regions’ values are positively skewed (with a longer upper tail).
This means that a comparison of means would be inappropriate and we must use the difference
in medians. The median of the North West was £57.15 million, the median in Yorkshire and
the Humber was £58.49 million. This makes the median difference £1.34 million (or -£1.34
million depending on which difference we are finding). Therefore, the SFA was £1.34 million
higher on average in the Yorkshire and Humber region than in the North West in 2015.

4.3 Comparing variables over time

When dealing with temporal data, it is important to quantify differences across time as well as
visualising them using a line graph. Comparison across time is typically given as an absolute
difference between time points, as a relative difference, or this is commonly converted into a
percentage change.

Recall the line graph given in an earlier section showing the reduction in the number of violent
crimes recorded between 2010 and 2020:
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This difference can be quantified by comparing the number of violent crimes recorded in 2010
and 2020. The absolute difference is found by subtracting the number of violent crimes recorded
in 2020, 1,239,000, by the number in 2010, 1,841,000. There were 602,000 less violent crimes
reported in 2020 compared to 2010.
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The relative difference is found by dividing one count by the other. In this example, the
relative difference (1, 841, 000 ÷ 1, 239, 000) is 1.486. This means that there were 1.486 times
more violent crimes reported in 2020 compared to 2010. The percentage change can be found
by comparing the relative difference to the null value of 1 (no relative difference). When
comparing 2010 to 2020, the relative difference was 0.486 above 1, giving the proportion
increase. This can be multiplied by 100 to give a percentage increase of 48.6%. Therefore,
there were 48.6% more violent crimes reported in 2010 compared to 2020.

The relative difference can also be found by comparing 2020 to 2010 if we want to give the
relative or percentage decrease in violent crime. The relative difference (1, 239, 000÷1, 841, 000)
is 0.673, so there were 0.673 times the number of crimes reported in 2020 than 2010. This
result is not intuitive, so converting the difference into a percentage decrease can make the
value easier to interpret. As with an increase, we first find the difference between the relative
difference and the null (1 - 0.673). This gives a proportion decrease of 0.327 or a percentage
decrease of 32.7%. Therefore, there were 32.7% fewer violent crimes reported in 2020 compared
to 2010.

4.4 Identifying trends between two numeric variables

Correlation coefficients are summary statistics that describe the strength and direction of a
relationship between two numeric variables. There are different types of correlation coefficients
that exist, the choice of which depends on the nature of the trend it is measuring: is it linear
or nonlinear?

The Pearson’s correlation coefficient measures the association between numeric variables
if we assume it is linear. It essentially measures how close points lie to the line of best fit
added to a scatterplot. The alternative to Pearson’s correlation is Spearman’s correlation
coefficient, this measures the general trend upwards or downwards, whether or not this is
linear. As with medians and IQRs, Spearman’s correlation coefficient uses less of the data
than Pearson’s so we only use it where necessary.

Correlation coefficients take a value between -1 and 1. A value of 0 represents no association,
values of +/- 1 represent perfect association (a straight or curved line depending on the choice
of statistic). Generally, a correlation coefficient will lie between 0 and +/- 1 where the further
the value gets from 0, the stronger the relationship is.

A correlation coefficient is said to show a positive association if the value is above 0. This
means as one variable increases, the other also tends to increase:

A correlation shows negative association if the value is below 0. This means as one variable
increases, the other tends to decrease:
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Figure 4.1: Positive Pearson correlation
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Figure 4.2: Negative Pearson correlation
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A correlation coefficient close to 0 represents little or no association. However, it could also
be an indication that the relationship is nonlinear and the Pearson coefficient is inappropriate.
In this case, the Spearman coefficient may be more appropriate:
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quantify a non-linear trend.

Figure 4.3: Circumstances where Pearson correlation is not appropriate.
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5 Inferential statistics

5.1 What are inferential statistics?

At the beginning of the course, we saw that one of the main aims of statistics is to make
inferences about a target population of interest based on results of analysis applied to a ran-
dom sample. These inferences require inferential statistics, namely p-values and confidence
intervals. These are estimated by combining results from the random, representative sample
taken from the target population, and information about the sample size and precision of the
sample estimate.

5.2 Measures of precision

Inferential statistics require a measure of how precise a sample estimate is. Precision is quan-
tified using the standard error (SE), calculated using the sample size and sample variability.
The formula used to calculate a standard error depends on the type of parameter we wish to
obtain from the target. For example, the standard error of a single mean (𝑆𝐸( ̄𝑥)) is found by
dividing the sample standard deviation (𝑆𝐷) by the square root of the sample size (𝑛):

𝑆𝐸( ̄𝑥) = 𝑆𝐷√𝑛

Regardless of the formula used or the parameter of interest, the larger a sample is, the more
precise an estimate will be. Conversely, the more varied a sample is, the less precise an estimate
is. A precise estimate is represented by a small standard error value. Standard errors are used
to estimate inferential statistics (p-values and confidence intervals) based on the central limit
theorem.

5.3 Central limit theorem

The central limit theorem states that parameter estimates (e.g. mean, difference between
means) from repeated, independent random samples taken from a population will tend towards
the normal distribution. This will be the case even where the target population does not follow
a normal distribution. The centre/peak of the normal distribution will be the true population
parameter, and the spread will be described by the standard error.
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For example, if we took many random samples from a target population and found the mean
of each sample, these sample means would follow a normal distribution. The mean and middle
of the normal distribution would be the target population mean, and the spread would be
described by the standard error of the mean.

−3SE −2SE −1SE Population
mean +1SE +2SE +3SE

As we know that repeated sample parameters tend to a normal distribution, we can exploit
the properties of the normal distribution to understand more about the target population
parameter.

5.4 Confidence intervals

A confidence interval is a range of values that the true population statistic is compatible with
based on the sample estimate, precision, and some pre-defined level of confidence.

The confidence interval is created assuming the central limit theorem. As the hypothetical
repeated estimates are assumed to follow a normal distribution, we can use the sample estimate
of the parameter and the standard error to obtain ranges within which we would expect a
certain percentage of parameter estimates to lie.

For example, if we were interested in the mean of a population (𝜇), we could use the sample
mean ( ̄𝑥) to estimate the population mean and capture a range in which 95% of the hypo-
thetical repeated sample means would lie. The boundaries of this interval could be calculated
using the formula: [ ̄𝑥 ± 1.96 × 𝑆𝐸( ̄𝑥)].
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95%

−2se Mean 2se

This 95% range is known as the 95% confidence interval. We are 95% confident that the true
target population mean lies within this interval.

The confidence level can be adjusted depending on how confident we wish to be about the true
population parameter. Adjusting the confidence level changes the number of standard errors
we capture from the mean within our interval. For example, a 99% confidence interval contains
all values within 2.58 standard errors from the sample estimate. The table below shows the
number of standard errors from the sample estimate captured for different confidence levels:

Confidence
level

Number of
standard errors

80% 1.282

90% 1.645

95% 1.960

99% 2.576

99.9% 3.291
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5.5 Confidence interval example

We wish to make inferences about the mean gestational period (length of time from conception
to the birth of a baby) in the UK. As we are not able to obtain all information from every
birth in the UK, we instead collect a random sample of 130 pregnant women and measure
their gestational period in days:
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This sample follows a normal distribution with mean gestational period 266.55 days, and a
standard deviation of 16.37. However, if we wish to make inferences about the whole of the
UK, we will need to estimate inferential statistics, such as a confidence interval.

First, we calculate the standard error of the mean: 𝑆𝐸 = 𝑆𝐷 ÷ √𝑛 = 16.37 ÷
√

130 = 1.436.

This can be combined with the sample mean, 266.55, and the confidence limit, 95%, to estimate
the 95% confidence interval:

[266.55 − 1.96 × 1.436, 266.55 − 1.96 × 1.436] = [263.74, 269.37]

Therefore, we are 95% confident that the mean gestational period in the whole of the UK lies
between 263.74 days and 269.37 days (if the sample is random and representative!).
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5.6 p-values

Another commonly used inferential statistic is the p-value. A p-value is the probability of
obtaining a sample estimate as extreme, or more extreme, than the current if some null hy-
pothesis (H0) were true. The null hypothesis is usually ‘no difference’ or ‘no association’,
depending on the value being tested.

If we consider the normal distribution of repeated sample estimates, the p-value is estimated
by assuming the null hypothesis is true (and is therefore the peak of the distribution) and
measuring how far the sample value is from this relative to the spread of the distribution (the
standard error).

−3SE −2SE −1SE H0 +1SE +2SE +3SE

The closer the sample estimate is to the null hypothesis, the more likely it was to occur if
the null hypothesis were true, and the higher the p-value. The further away from the null
hypothesis, the less likely it would be to occur and the lower the p-value.

Results are often referred to as statistically significant if a p-value falls below a certain
threshold. This threshold is often set to 0.05, or a 5% chance that an estimate as extreme as
the one obtained would occur if the null hypothesis were true.

Although arbitrary cut-offs may be useful in some situations, for example where a decision
needs to be taken based on the results, this is not how probability behaves. In reality, there
is very little difference between a p-value of 0.049 (4.9% chance) and 0.051 (a 5.1% chance).
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Therefore, it is not advised to report ‘accepting’ or ‘rejecting’ a null hypothesis, despite how
commonplace this is in some literature.

5.7 p-value example

Earlier, we estimated a 95% confidence interval to make inferences about the mean gestational
age in the UK using a sample with a mean of 266.55 days. Now, we wish to test the null
hypothesis that the mean gestational age is equal to the standard ‘due date’ of 40 weeks, or
280 days.

We begin by assuming the null hypothesis is correct, and calculate how far the sample estimate
lies in the hypothetical sample estimate distribution:

266 −5se −2se 280 2se 5se 10se
Gestational period (days)

The sample estimate, 266.55 days, lies very far from the hypothesised 280 days. This leads
us to a very small p-value, less than 0.0001. Such a small p-value would most certainly be
considered statistically significant, and provides strong evidence against the null hypothesis
that this sample came from a population with a mean gestational age of 280 days.

Note that although the p-value is very small, the null hypothesis is still not considered impos-
sible and is not rejected. This would require a p-value of 0 which is statistically impossible.
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5.8 The relationship between p-values and confidence intervals

As p-values and confidence intervals are based on the same information and theories, the results
are linked. For example, if a p-value is less than 0.05, the sample estimate is further than 1.96
standard errors from the null hypothesis, meaning the null hypothesis will not lie in the 95%
confidence interval. Conversely, if a p-value is higher than 0.05, the sample estimate is closer
to the null hypothesis and the 95% confidence interval will contain the null hypothesis.
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Exercise 4: Inferential statistics

Comment on the way in which these results have been presented. Are the results clear? What
has been done well? Is there anything you think could be improved? Do the results shown
appear to be valid (from the information we are given)?
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A Exercise 1 solutions

Question 1

For each of the following research questions, identify the Population, Intervention and Com-
parison (if applicable) and the Outcome.

a. Does the introduction of a 4-day working week increase productivity in government
departments?

P: Staff working in government departments (these departments would be named in real
life!)

I: 4-day working week

C: Regular working structure

O: Productivity, e.g. deadlines met (this would need to be more well-defined, specific and
measurable!)

b. What is the average time between an offence being committed and case completion for
defendants dealt with at magistrates’ courts in the North West of England?

P: Defendants dealt with at magistrates’ courts in North West England

I: N/A

C: N/A

O: Time between offence being committed and case completion

Note

The outcome is the time between these points, not the average that is referenced in the
question. Picture the dataset: the difference in time will be recorded for each defendant
as a variable.

c. How has the prison population in England and Wales changed compared to pre-pandemic
levels?
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P: Prisons in England and Wales

I: Pre-pandemic

C: Post-pandemic

O: Population in prisons

Note

This question can be tricky as the outcome is actually a population. Again, it helps to
picture the dataset we would use to answer this research question:

• Each row would be a prison in England or Wales
• There would be a time period variable, where observations are either classified as

pre- or post-pandemic
• The outcome variable would be the prison population measured at each time point

for each prison in England and Wales.

Question 2

If the practitioners were more likely to record information on simpler cases, as they had more
time to do so, this would mean these are more likely to be observed than the more
technical cases. The data will therefore not be random and will not be representative of
these technical cases. This means that the results of the analysis would be biased.

If the practitioner had not recorded details because they were off work with the flu and had
not had time to catch up on their work, this is not related to the data and the missing
values are random. This would make our sample smaller than anticipated but still random
and representative of the target population. Therefore, results from this analysis would be
unbiased.

69



B Exercise 2 solutions

Interpret the graphs, note any trends, any surprising results, and anything you would check
in the data if this was your work. Make a note of things the visualisation did well and ways
in which it could be improved.

Question 1

Figure B.1: Prison populations, March 2003 to 2023

• Dip in sentencing in 2020 during the pandemic, assuming due to court closures. Increas-
ing up to 2023, almost returned to previous levels.
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• Number on remand has been increasing since around 2018/19. Look back into the data
to try to understand the reasons for this. Is it possible that the steeper increase post-2020
is a result of an overloaded court system?

• Hard to see differences in remand population as it is so small compared to the other lines,
would it be better to show these as separate plots to better understand the changes over
time?

• Annotations to highlight the court closures and any changes in policy that could help
explain patterns would be a helpful addition.

• Text should be made larger to make the graph more accessible.

Question 2

Figure B.2: Number of offenders under Probation Service supervision, 31 December 2013 to
2023

• Clear annotation helps to explain the increase in supervisions following a policy change.
• The differences in total supervisions makes it difficult to compare the number of types of

supervisions over time. Has the number increased in every type following the introduction
of the ORA or has this had more of an impact on post-release supervision?
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• These comparisons could be made clearer by adding labels with total to the bars or could
be compared using a line graph with a line per supervision type (and possibly a total
line).

• A proportion stacked bar chart may also be useful to compare whether the distribution
across types has changed following the change in policy.

• Text should be made larger to make the graph more accessible.

Question 3

Figure B.3: Proportion of outstanding cases at the Crown Court by grouped age, Q1 2014 –
Q4 2023

• There is a clear trend over time, with the proportion of ‘older’ cases increasing following
the closure of courts in 2020.

• An annotation would help make this trend clearer and make the proportions easier to
interpret. -The use of bars creates a Moire pattern, a visual trick that makes the bars
look like they are moving. This is quite unpleasant for some readers (me included),
making it hard to look at the plot too long and interpret it.

• Consider joining the bars into a stacked area plot to remove this unpleasant pattern.
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• Text needs to be larger to make the graph more accessible.
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C Exercise 3 solutions

Question 1

The following line graphs are taken from the Criminal Courts statistics quarterly report, show-
ing the average number of days from offense to completion for defendants at the Crown Court.
Which graph is the most appropriate to display the average time and why?

Figure C.1: Average number of days from offence to completion for defendants dealt with at
the Crown Court, Q1 2014 – Q4 2023

When displaying averages/measures of centre, we should only give one measure. If the data are
normally distributed, the mean and median will be equal so there is no need to show both. If
the data are not normal, the mean is not a valid measure and should not be shown anyway.
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The median should be used as there is a substantial difference between these values, indicating
that the data are not normally distributed.

When displaying graphs for comparison, ensure that the axis scales are the same to avoid
misleading readers who will assume a like-for-like comparison.

Question 2

The mean and standard deviation of waiting times in weeks for hearings in the Crown Court
between 2020 and 2023 are given in the table below. Using this information, what can you tell
about the distribution of these times?

Year Mean waiting time (weeks) Standard deviation waiting time (weeks)

2,020 13.5 10.2

2,021 19.1 15.6

2,022 20.9 13.9

2,023 22.8 14.7

If we use the formula to approximate the 95% sample range, all these give negative waiting
times which are impossible. For example, in 2020 the 95% range of waiting times would be
approximately 13.5 ± (10.2 × 2) = [−6.9, 33.9] weeks. Therefore, the data are not normally
distributed and the mean should not be given. The median and interquartile range would be
more appropriate.
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D Exercise 4 solutions

Comment on the way in which these results have been presented. Are the results clear? What
has been done well? Is there anything you think could be improved? Do the results shown
appear to be valid (from the information we are given)?

• Tables not the most exciting method of visualisations but they do provide all information
in a clear format

• Not clear what the interval labelled ‘estimated difference’ is showing. I assume it is the
confidence interval but no indication about the confidence levels used.

• All three tables have confidence intervals containing 0, or no difference. This shows each
outcome is compatible with no difference between the intervention and control groups.
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• This agrees with the relatively large p-values indicating no statistically significant differ-
ences between the groups.

• Example of a confidence interval interpretation (from table 3): we are 95% confident
that individuals that received support committed their first re-offence between 6 days
earlier (-6) and 43 days later than the control group on average. The p-value shows that
we would expect this big of a difference (or more extreme) about 14 in 100 times if there
were no differences at the population level. The difference is not statistically significant.

• Effective visualisations, eye-catching and clear (especially the first two). Nice use of
annotations to ensure the values are clear

• Confidence intervals should not be given for each group separately as they are not com-
parable. Confidence intervals should only be given for the parameter that we are trying
to find at the population level. In this case, we are interested in the confidence interval
of the differences. Comparing the separate confidence intervals is not valid.
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